
NASA Technical Memorandum 109038

i#f

Intel NX to PVM3.2
Message Passing Conversion Library

Trey Arthur

Computer Sciences Corporation

Hampton, Virginia

and

Michael Nelson

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia

o
_0
O
f_
,-4
I

Z

u_

U
C

_O
u_
O
r_
O,
e-4

O

,-.4

t_

October 1993

NASA
National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virgina 23681-0001

_C

o.
Z

c/1
x
Z_

,,JZ

i,- _,2
Z

Z

O-

L._

I

I

-#

<_

Intel NX to PVM3.2

Message Passing Conversion Library
Version 2.0*

T. Arthur (j.j.arthur@larc.nasa.gov)t

M. Nelson (m.l.nelson@larc.nasa.gov) t

October 14, 1993

Abstract

NASA Langley Research Center has developed a library that allows Intel NX mes-

sage passing codes to be executed under the more popular and widely supported Parallel

Virtual Machine (PVM) message passing library. PVM was developed at Oak Ridge Na-

tional Labs and has become the defacto standard for message passing. This library will

allow the many programs that were developed on the Intel iPSC/860 or Intet Paragon

in a Single Program Multiple Data (SPMD) design to be ported to the numerous ar-

chitectures that PVM (version 3.2) supports. Also, the library adds global operations

capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.

1. Introduction

At NASA Langley Research Center (LaRC), the center's vector supercomputers have

become heavily saturated with users' jobs. Alternatives are being considered to off load

some of these jobs to other systems. Among the alternatives considered is the transition

of some applications from the vector supercomputers to parallel machines and workstations

clusters. With the proliferation of high powered workstations, workstation clustering, in

both batch and parallel use, offers an attractive solution to supercomputer saturation.

At NASA LaRC, the Parallel Virtual Machine (PVM) software provides the most popular

parallel programming environment. PVM was developed at Oak Ridge National Laboratory

*This work was performed under NASA contract NAS1-19038
?Member of the Technical Staff, Computer Sciences Corporation, Hampton, VA
t NASA Langley Research Center, Hampton, VA

and has become a defacto standard for message passing (ref. 4) . But before PVM had

reached this level of popularity, many parallel applications had been developed on the Intel

iPSC/860. There was a need to transition these Intel NX message passing (ref. 3) codes to

PVM.

This document describes the Intel to PVM, version 3.2 (PVM3) libraries. A familiar-

ity with Intel NX and PVM message passing is assumed. The libraries, libi2pvm3.a and

libfi2pvm3.a, are written in C and contain wrappers for several Intel functions and routines.

The executable, pvmezec, is a C program which starts the PVM daemons, runs the user

application, waits for completion of the slaves, and terminates the PVM daemon processes.

If pvmezec is run in the Distributed Queing System (DQS) environment (ref. 5), then the

PVM daemons will not be started or stopped by pvmezec, pvmexec is able to detect if it is

being run in DQS and will relinquish PVM daemon control to DQS.

The main purpose of the libraries is to allow the user with a code written for a Intel

Message Passing Supercomputer in C or FORTRAN to quickly port the code to a worksta-

tion cluster using PVM3. To use the libraries in conjunction with the executable pvmezec

(pvmezec is analogous to cubeezecl), the user must add two subroutine calls and convert

asynchronous message passing calls (e.g., isend and irecv) to synchronous calls (e.g., csend

and crecv).

Another use of the libraries is to give the PVM3 user access to many of the global libraries

which are absent in the standard PVM distribution. To use the global routines without using

pvmezec, the user should make a call to the pvmsetup routine (see section 4). After the

task ids and number of slave processes are known, the pvmsetup routine is called so that

the global routines can be used.

2. Building the libraries

This library is available via anonymous ftp from

blea rg. larc. nasa. gov :/pub /p vm /i2pvm3.shar.Z

Before unpacking i2pvm3.shar, the user should make the directory SHOME/pvm3. To unpack

the library, the following should be typed in the user's home directory:

% sh i2pvm3.shar

l cubeezec was developed by William J. Nitzberg from the Numerical Aerodynamic Simulation (NAS)

Systems Division at NASA Ames Research Center to easily run executable code on the iPSC/860, cubeezec

is not an Intel supported utility.

2

The following should be typed to compile the library:

% cd pvm3/i2pvm3

% make

This will compile the libraries and pvmexec.c. The libraries are moved to

SPVM_ROOT/lib/$PVM_ARCH. The executable, pvmexec, is moved to

$PVM_ROOT/bin/$PVM_ARCH. The include files that the user will need are installed in

$P VM_R OO T/includ e.

To compile a program to run in the PVM environment, the following libraries should be

linked in this order: (libfi2pvm3.a), libi2pvm3.a and libpvm3.a. The following is an example

compile line for a C and FORTRAN program, respectively:

% cc -0 -o daria daria, c -LSP VM_RO0 T/lib/$P VM_A RCH -li2pvm3 -Ipvm3

%]'77-0 -o daria daria.f-LSPVM_ROOT/lib/$PVM_ARCH-lfi2pvm3 -li2pvm3 -lpvm3

3. Use of pvmexec

The libraries can be easily used in conjunction with the executable pvmexec, pvmexec

starts up the daemon processes, runs the application, waits for the application to finish

then kills the PVM daemons. If pvmexec is run in the Distributed Queing System (DQS)

environment (ref. 5), then the PVM daemons will not be started or stopped by pvmexec.

pvmexec is able to detect if it is being run in DQS and will relinquish PVM daemon control

to DQS.

When using the library with pvmexec, the first executable line in the code should be a

call to pvminit(). This routine receives messages from pvmexec. The final call in the user's

program should be to pvmquit(). Failure to call these routines by ALL processes

will cause pvmexec to hang. Once the pvmquit() routine has been called by all processes,

pvmexec will kill the PVM daemons and exit. As noted before, the user must also convert

asynchronous routines to synchronous routines.

pvmexec recognizes the three options -t, -v, and -V. Option -t is used to specify the

number of processes to start, -v is verbose mode, and -V prints the version of pvmexec. An

example for running four processes of the executable node:

% pvmexec -v -t 4 node

pvmexec will start daemons on all of the hosts in hostfile, hostfile is a PVM host file (ref. 1)

and is read from the directory in which pvmexec is executed. If hostfile is not present,

pvmexec will run the all PVM processes on the current workstation.

4. Use of libraries without pvmexec

The libraries can be used without using pvmezec, however, it is the user's responsibility

to start and stop the PVM daemons (see (ref. 1) for more information). To use the libraries

without pvmezec, make a call to pvmsetup after the task ids and number of slave processes

are known. NOTE: if using pvmsetup, do NOT call pvminit or pvmquit. The following

code fragment is an example on how to use pvmsetup.

C example:

mytid = pvm_mytid() ;

rids [0] --pvm_parent () ;

if(tids[O] < 0){

rids[O] ffimytid;

pvm_spawn("spmd", (char**)0, 0, ""

pvm_initsend(PvmDataDefault);

pvm_pkint(tids, NPROC, I) ;

pvm_mcast (&rids [I], NPROC-I, O) ;

}

else {

pvm_recv(tids[O], 0);

pvm_upkint(tids, NPROC,

}
1);

pvmsetup(tids,NPROC);

, NPROC-I, atids[l]) ;

FORTRAN example:

call pvmfmytid(mytid)

call pvmfparent(tids(O))

if (tids(O) .it. O) then

rids(O) = mytid

call

call

call

else

call

call

end if

pvmfspawn('spmd', PVMDEFAULT,

pvmfpack(INTEGER4, rids, NPROC,

pvmfmcast(NPROC-I, rids(1), 0,

pvmfrecv(tids(O), O, info)

pvmfunpack(INTEGER4, tids,

call pvmsetup(rids, NPROC)

'*', NPROC-1, rids(1), numt)

I, info)

info)

NPROC, I, info)

4

5. Supported routines

Routine Usage Description

Sending

csend()

csendsi()

csendi()

csendr()

csendd()

Receiving

crecv()

crecvsi()

crecvi()

crecvr()

crecvd()

Global

gdhigh()

gdlow()

gdprod()

gdsum()

gihigh()

gilow()

giprod()

gisum()

gshigh()

gslow()

gsprod()

gssum()

gsync()

csend(msgtype, buf, len, node, pid);

csendsi(msgtype, buf, len, node, pid);

csendi(msgtype, buf, len, node, pid);

csendr(msgtype, buf, len, node, pid);

csendd(msgtype, bur, len, node, pid);

crecv(msgtype, buf, len);

crecvsi(msgtype, buf, len);

crecvi(msgtype, buf, len);

crecvr(msgtype, buf, len);

crecvd(msgtype, buf, len);

gdhigh (buf,num,work);

gdlow(buf,num,work);

gdprod(buf,num,work);

gdsum(buf,num,work);

gihigh(buf,num,work);

gilow(buf,num,work);

giprod(buf,num,work);

gisum(buf,num,work);

gshigh (buf,num,work);

send a message

send short integer message

send an integer message

send a real message

send a double precision message

receive

receive

receive

receive

receive

a message

short integer message

an integer message

a real message

a double precision message

global double precision MAX

global double precision MIN

global double precision MULTIPLY

global double precision SUM

global integer MAX

global integer MIN

global integer MULTIPLY

global integer SUM

global real MAX

gslow(buf,num,work); global real MIN

gsprod(buf,num,work); global real MULTIPLY

gssum(buf,num,work); global real SUM

gsync(); synchronization

Other

pvminit()

pvmsetup()

pvmquit()

mynode()

numnodes()

cprobe()

infocount()

infonode()

dclock()

pvminit();

pvmsetup(tids,nproc);

pvmquit();

int mynode();

int numnodes();

cprobe(msgtype);

int infocount();

int infonode();

double dclock();

call when using pvmexec

call when NOT using pvmexec

send quit signal to pvmexec

returns logical process number

returns number of processes

wait for a message to arrive

length of message in bytes

node id for sending process

returns wall clock in seconds

Table 1: Supported C routines

Routine Usage Description

Sending

csend()

csendsi()

csendi()

csendr()

csendd()

Receiving

crecv()

crecvsi()

crecvi()

crecvr()

crecvd()
Global

gdhigh()

gdlow()

gdprod()

gdsum()

gihigh()

gilow()

giprod()

gisum()

gshigh()

gslow()

gsprod()

gssum()

gsync()

Other

pvminit()

pvmsetup()

pvmquit()

mynode()

numnodes()

cprobe()

infocount()

infonode()

dclock()

call csend(msgtype, buf, len, node, pid)

call csendsi(msgtype, buf, len, node, pid)

call csendi(msgtype, buf, len, node, pid)

call csendr(msgtype, buf, len, node, pid)

call csendd(msgtype, buf, len, node, pid)

call crecv(msgtype, buf, len)

call crecvsi(msgtype, buf, len)

call crecvi(msgtype, buf, len)

call crecvr(msgtype, buf, len)

call crecvd(msgtype, buf, len)

call

call

call

call

call

call

call

call

call

call

send a message

send short integer message

send an integer message

send a real message

send a double precision message

receive

receive

receive

receive

receive

gdhigh(buf, num,work) global

gdlow(buf,num,work) global

gdprod(buf,num,work) global

gdsum(buf, num,work) global

gihigh(buf, num,work) global

global

global

global

global

global

gilow(buf,num,work)

giprod(buf,num,work)

gisumq buf,num,work)

gshighq buf,num,work)

gslow(buf,num,work)

a message

short integer message

an integer message

a real message

a double precision message

double precision MAX

double precision MIN

double precision MULTIPLY

double precision SUM

integer MAX

integer MIN

integer MULTIPLY

integer SUM
real MAX

real MIN

call gsprod(buf,num,work)

call gssum(buf,num,work)

call gsync()

call pvminit()

call pvmsetup(tids,nproc)

call pvmquit()

integer mynode()

integer numnodes()

call cprobe(msgtype)

integer infocount()

integer infonode()

double precision dclock()

global real MULTIPLY

global real SUM

synchronization

call when using pvmexec

call when NOT using pvmexec

send quit signal to pvmexec

returns logical process number

returns number of processes

wait for a message to arrive

length of message in bytes

node id for sending process

returns wall clock in seconds

Table 2: Supported FORTRAN routines

If the PVM environment has machines with different byte ordering conventions, some

additional code changes will be needed. This is because message passing on the Intel is

based on sending messages in bytes. If the PVM environment has machines with different

byte ordering conventions, the user will need to use a different set of communication routines.

6

These routines help PVM determine how to send the message. To use these calls, replace

csend with csendx where x is either si, i, r or d which stands for short integer, integer, real

or double precision, respectively. For example, to send the real variable y to logical node 2,

use this syntax: csendr(rasgtype, y, 4, 2, 0). Note that the message length is still in bytes,

so the user only needs to add the appropriate appendix to csend. This message should be

received by using the corresponding receive routine: crecvr(msgtype, y, 4).

6. Unsupported routines

Many NX routines are absent from this library. The supported routines were chosen

based on experience in porting from the Intel/i860 to the PVM environment. Many of the

asynchronous routines are not supported because it is difficult to emulate these routines in

PVM. The easiest solution to this problem is to have the user change asynchronous routines

(e.g., isend, irecv) to synchronous communication (e.g., csend, crecv).

7. C Example

Given the following Intel C program :

#include <stdio.h>

#include <cube.h>

main()

{

int Jam, nproc;

float x;

iam = mynode();

nproc = numnodes();

if (!jam) {

x = 20.0;

csend(lO0, x,

}

else {

crecv(lO0, x, 4);

}

gssum(x,l,work);

4, -1, 0);

if (!iam) printf("check: x should equal Y.d\n",nproc*20.O);

printf("iam= Y.d, x= 7.f\n",iam,x) ;

7

To run this program in a PVM environment using the libi2pvm3.a library, the following code

changes would need to be made:

1) change the include file "cube.h" to "nx2pvm.h"

2) change the first executable line to "pvminit();"

3) change the last executable line to "pvmquit();"

Below is the modified C code:

#include <stdio.h>

#include <nx2pvm. h>

main()

in% Jam, nproc;

float x, work;

pvmini%();

Jam = mynode();

nproc = numnodes() ;

if (!Jam)

x = 20.0;

csend(lO0, x,

else

crecv(lO0, x, 4);

>

gssum(x,l,work);

4, -1, 0);

if (!Jam) printf("check: x should equal 7.d\n",nproc*20.0) ;

printf("iam-- 7.d, x= 7,f\n",iam,x) ;

pvmquit () ;

The following is a makefile for compiling the program to run on a PVM environment:

#

INCLUDEDIR =

PVMLIB =

BDIR =

XDIR =

CLIBS =

$(PVM_ROOT)/include

$(PVM_ROOT)/Iib/$(PVM_ARCH)

$(PVS_ROOT)/bin

$(BDIR)/$(PVM_ARCH)

-li2pvm3 -lpvm3

CFLAGS = -g

beavis:

cc $(CFLAGS) -I$(INCLUDEDIR) -L$(PVMLIB) -o $© beavis.c $(CLIBS)

mv beavis $(XDIR)

8. FORTRAN Example

Given the following Intel FORTRAN program :

program beavis

include 'fcube.h'

iam = mynode()

nproc = numnodes()

if(Jam .eq. O) then

x = 20.0

call csend(lO0, x, 4, -I, O)

else

call crecv(lO0, x, 4)

endif

call gssum(x, l,work)

if(Jam .eq. O) write(*,*) 'check: x should equal ',nproc*20.O

write(*,*) 'Jam = ',Jam,', x= ',x

end

9

To run this program in a PVM environment using the libfi2pvm3.a library, the following

code changes would need to be made:

1) change the include file "fcube.h" to "fnx2pvm.h"

2) change the first executable line to "call pvminit()"

3) change the last executable line to "call pvmquit()"

Below is the modified FORTRAN code:

program beavis

include 'fnx2pvm.h'

call pvminit ()

Jam = mynode()

nproc = numnodes()

if(iam .eq. O) then

x --20.0

call csend(lO0, x, 4, -I,

else

call crecv(lO0, x, 4)

endif

call gssum(x, l,work)

if(iam .eq. O) write(*,*)

write(*,*) 'iam = ',iara,'

call pvmquit ()

end

o)

'check: x should equal

, X = ',X

',nproc*20.0

The following is a makefile for compiling the program to run on a PVM environment:

#

PVMLIB =

BDIR =

XDIR =

FLIBS =

$(PVM_ROOT)/Iib/$(PVM_ARCH)

$(PVM_ROOT)/bin

$(BDIR)/$(PVM_ARCH)

-ifi2pvm3 -li2pvm3 -Ipvm3

beavis:

cp $(PVM_ROOT)/include/fnx2pvm.h

f77 $(FFLAGS) -L$(PVMLIB) -o $¢ beavis.f $(FLIBS)

mv beavis $(XDIR)

i0

9. Executing the examples

The program is compiled and linked by typing make. For compatibility with PVM, the

executable beavis is moved to SPVM_ROOT/bin/$PVM_ARCH. To execute beavis over four

machines, the file hostfile should be created with each machine name on a separate line

(see (ref. 1) for details on how to set up a host file). To execute the code, the following

should be typed:

% cd SPVM_ROOT/bin/$PVM_ARCH

% pvmexec -v -t 4 beavis

Analogous to PVM, all output to the screen is redirected to the file//tmp/pvml.< uid >. To

obtain the status of the job while it is running, in another window on any of the machines

running PVM, the following should be typed:

_o pvm

pvm> ps -a

10. Summary

This report describes the use of the NASA Langley Research Center library for conversion

of Intel NX message passing codes to PVM3.2 message passing codes. If an application is a

candidate for conversion, it must be of SPMD design and any asynchronous sends and receives

must be converted to synchronous sends and receives. If the intended PVM environment is

heterogeneous, some additional code modifications may be necessary.

This library should enable users to quickly port codes developed on the Intel iPSC/860

or Intel Paragon to other environments. This includes workstations clusters or even other

parallel computers that provide PVM support. The use of pvmexec emulates the Intel NX

environment and should minimize porting difficulties. The use of this library also adds global

operations capability to PVM. Additions, modifications, or suggestions are welcome and can

be sent to the authors.

References

1. Geist, A.; Beguelin, A.; Dongarra, J.; Jiang, W.; Mancheck, R.; Sunderman, V.: PVM 3 Users'
Guide and Reference Manual. ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge,
TN, May 1993.

11

2. Grant, B.K.; Skjellum, A.: The PVM Systems: An In- Depth Analysis and Documenting
Study - Concise Edition. Lawrence Livermore National Lab, Livermore, CA, 20 August 1992.

3. iPSC/2 and iPSC//860 User's Guide. Intel Corporation, Order Number 311532-007, April
1991.

4. Nelson, M.: PVM Provides Power in the Public Domain. Parallelogram: The International

Journal of High Performance Computing, May/June 1993, pp. 20-21.

5. Revor, L.: DQS Users Guide. Argonne National Lab, September 15, 1992.

12

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reportingburdenfor this collectionof information isestimated to average1 hourpar response,includingthe time for reviewinl; instructions,searchingexistingdata iources,
gathering and melntainln| the dataneeded,andcompletin| and reviewingthe collectionof information,SendcommenUregardin|this burdenestimateor any otheraspectof this
collectionof information,including sug|estiontfor reducinl thisburden,to WashingtonHeadquartersServices,Directoratefor InformationOperationsendReports,]215 Jefferson
DavisHi|hway,Suite 1204, Arlington,VA 22202-4302, end to the Officeof Managementand Budget,PaperworkReductionProject(0704-0188), Washington,DE 20503.

1. AGENCY USE ONLY(Leave b/ank)l 2, REPORT DATE 3. REPORT TYPE AND DATES COVERED

I October 1993 Technical Memorandum

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Intel NX to PVM3.2 Message Passing Conversion Library

6. AUTHOR(S)

Trey Arthur

Michael L. Nelson

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU 505-90-53-02

8. PERFORMING ORGANIZATION

REPORT NUMBER

]0. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-I09038

II. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

U nclassified-U nlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

NASA Langley Research Center has developed a library that allows Intel NX message passing codes to be executed

under the more popular and widely supported Parallel Virtual Machine (PVM) message passing library. PVM was

developed at Oak Ridge National Labs and has become the defacto standard for message passing. This library will

allow the many programs that were developed on the Intel iPSC/860 or Intel Paragon in a Single Program Multiple

Data (SPMD) design to be ported to the numerous architectures that PVM (version 3.2) supports. Also, the library

adds global operations capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.

14. SUBJECT TERMS

Distributed Computing; Parallel Processing; PVM3; Intel NX Message Passing

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

_ISN 7540-01-280-S500

18, SECURITY CLASSIFICATIOI_
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

IS. NUMBER OF PAGES

13

16. PRICE CODE

AO3

20. LIMITATION

OF ABSTRACT

;tondard Form 298(Ray. 249)
PrescribedbyANSI Std. Z39-18
298-102

